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Abstract. We implement a general numerical calculation that allows for a direct comparison between
nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs Γ -space. Us-
ing paradigmatic first-neighbor models, namely, the inertial XY ferromagnet and the Fermi-Pasta-Ulam
β-model, we show that at intermediate energies the Boltzmann-Gibbs equilibrium distribution is a conse-
quence of Newton second law (F = ma). At higher energies we discuss partial agreement between time
and ensemble averages.

PACS. 05.10.-a Statistical physics, thermodynamics, and nonlinear dynamical systems – 05.20.-y Classical
statistical mechanics – 05.45.-a Nonlinear dynamics and chaos – 05.20.Gg Classical ensemble theory

The problem of the dynamical foundation of Boltzmann-
Gibbs (BG) statistical mechanics dates back to the origi-
nal proposal of this powerful formalism (see, e.g., [1]) and
despite many important results this fundamental ques-
tion [2] still presents open basic aspects (see, e.g., [3–7] and
references therein). Thanks to the current computational
capability we can numerically integrate the Hamilton
equations of large enough systems and compare the results
with the predictions of the BG formalism. Although this
technique has been largely and successfully implemented
in a microcanonical perspective (fixed-energy molecular
dynamics), the methods used when addressing systems
in contact with a thermostat (such as Monte Carlo and
Nosé-Hoover [8]) usually impose an ad hoc dynamics. In
this paper we introduce a scheme which enables the dis-
cussion of the canonical distribution in Gibbs Γ -space on
the basis of the equations of motions. Within the present
approach both time and ensemble averages are performed
dynamically, so that we are able to discuss ergodicity.
Using two paradigmatic first-neighbor nonlinear Hamil-
tonian systems — the one-dimensional inertial XY fer-
romagnet and the Fermi-Pasta-Ulam (FPU) β-model —
we find a remarkable agreement between BG equilibrium
calculations and dynamical ensemble averages. We also
compare partial ergodicity failure with the maximum Lya-
punov coefficient. Our numerical calculation can be imple-
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mented in systems that allow for a textbook definition of
the canonical ensemble (i.e., part of a large isolated sys-
tem). It would also be interesting to check the same pro-
cedure in situations where, due for example to the pres-
ence of long-range terms, important deviations from the
BG predictions have been found [9,10]. We are presently
making progress on this task.

Given some macroscopic conditions in the phase space
of the system under consideration (Γ -space), the average
value of a dynamical function can be defined using time or
ensemble averages; ergodicity means that these two meth-
ods are equivalent. We remark that both approaches are
dynamically realizable. In the first case one focuses on a
single dynamical realization. The probability pR of find-
ing the system inside a coarse-grained region R of Γ -space
is defined by the fraction of time tR spent by the system
inside that region during the (eventually infinite) total
amount of time τ of its phase space trajectory: p t

R ≡ tR/τ ,
where the superscript t stands for time definition. The sec-
ond is achieved for instance by fixing a certain instant of
time t∗ and repeating the dynamical evolution up to t∗,
under the same macroscopic (but different microscopic)
initial conditions. Counting the number of times nR the
system is found in region R at time t∗, with respect to
the (eventually infinite) total number of times n the cal-
culation is performed, one defines p e

R ≡ nR/n, where the
superscript e indicates ensemble.

For a typical N -body conservative Hamiltonian sys-
tem (typical in the sense that it complies with the BG
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prescriptions) at fixed energy EN (microcanonical setup),
a standard introduction of the canonical ensemble is ob-
tained defining the canonical system as composed by a
subset of M interacting elements, with 1 � M � N . The
energy of the M elements satisfies EM � EN , and the
interaction energy between the canonical system and the
rest of the isolated system (thermal bath) is assumed to
be much smaller than EM . Under these circumstances, the
probability pj of finding the system in a M -microstate j
is given by the BG equilibrium calculation pj ∝ e−βEj ,
where β ≡ 1/T is the inverse temperature (without loss of
generality, we set the Boltzmann constant kB ≡ 1), and
Ej is the energy of the microstate. A dynamical approach
for the confirmation of this result must face the follow-
ing numerical difficulty. The Γ -space is Md dimensional,
d being the dimension of the single-particle phase space.
If we implement a coarse-graining for example by mak-
ing a partition of k intervals in each coordinate, the total
number of (hyper)cells ΩM is of order kMd. Just to put
some indicative numbers, with k = 4, M = 100 and d = 2
we get ΩM ∼ 4200 ∼ 10120. We should hence implement
a numerical integration of 2N(�200) Hamilton equations
with a total amount of time τ (or a total number of real-
izations n) much larger than 10120, which is beyond what
we can presently do numerically.

Nevertheless, we can proceed through an alternative
path and, instead of focusing on the probability associ-
ated to a microstate, we could consider the probability of
finding the canonical system with a given energy EM . In
this case the BG answer is

p(EM ) =
ω(EM )e−βEM

Z
, (1)

where Z is the partition function and

ω(EM ) =
∫ M∏

i=1

(dpidqi)δ[EM − HM (pi, qi)] (2)

is the phase-space density of states at energy EM . As well
known for a classical system, ω(EM ) does not depend on
any particular thermal statistics, it only depends on the
Hamiltonian of the system. In other words, we can calcu-
late ω(EM ) by using any statistics, for example the BG
one [11]. The density of states ω(EM ) can be analytically
estimated through the thermodynamic relation linking the
statistical entropy to the temperature: ∂ ln ω(E)/∂E = β.
Integrating this relation we have that ω(EM ) is given
through the caloric curve T (E):

ω(EM )
ω(E0)

= exp

[∫ EM

E0

dE′ β(E′)

]
, (3)

where E0 is the energy of the fundamental state. In brief,
the Hamiltonian structure of the system defines the den-
sity of states as a function of the energy; once this re-
lation is known it is sufficient to multiply ω(EM ) by the
Boltzmann factor e−βEM and to normalize, in order to ob-
tain p(EM ) for the whole spectrum of temperatures. Now,
the dynamical computation of p(EM ) is much easier than

the one for pj . All we have to do is to numerically integrate
Hamilton equations and to calculate the value of the en-
ergy EM for the canonical subset at each integration step.
We can then coarse-grain the energy spectrum into bins
of width ∆EM and build up a normalized histogram of
the occurrence of each of these bins. In analogy with the
previous discussion,

p t(EM ) ≡ t(EM )
τ ∆EM

and p e(EM ) ≡ n(EM )
n ∆EM

(4)

represent then the probability distribution of finding the
canonical system with energy EM , respectively using time
and ensemble averages.

To illustrate this calculation, we consider next a spe-
cific class of analytically solvable nonlinear first-neighbor
Hamiltonians,

HN = KN + VN =
N∑

i=1

[
p2

i

2
+ V (qi+1 − qi)

]
, (5)

with periodic boundary conditions (qN+1 ≡ q1). As a first
case we analyze a one-dimensional chain of rotors with
V (qi+1 − qi) ≡ 1 − cos(qi+1 − qi), so that the canonical
coordinates qi ∈ [0, 2π) and pi ∈ � are respectively the
angular coordinates and the angular momenta of the (unit
inertial momenta) rotors. This Hamiltonian is an inertial
version of the classical XY ferromagnetic spin model and
constitutes a dynamical prototype for spin systems in sta-
tistical mechanics [5,7]. The model is nearly integrable for
both low and high energies. The former regime is defined
for T < 0.05 (specific energy e < 0.05) [5] and it is called
strong coupling regime, for which the rotors constitute a
set of oscillators almost linearly coupled. The latter is ob-
tained say for T > 10 (e > 6) [5], where the rotors are
almost free (weak coupling regime). For this model, dy-
namical deviation from BG statistics where detected both
in the strong and in the weak coupling regimes. Since our
main scope is to check our calculation scheme in standard
situations, we will mainly concentrate in the intermediate
energy range, and discuss partial disagreement that occurs
at higher energies. The canonical partition function

ZM =
∫ M∏

i=1

(dpidqi) exp [−βHM (pi, qi)] , (6)

gives, for this model, the specific free energy
f ≡ − limM→∞[lnZM/(Mβ)] (see. e.g., [5]):

f = −T

[
1
2

ln T + ln I0

(
1
T

)
+ ln 2π

3
2

]
+ 1, (7)

where I0(x) is the modified Bessel function of the
first kind of order zero. Inversion of the relation
E(T ) = F − T∂F/∂T furnishes the BG caloric curve T (e),
where e ≡ limM→∞ EM/M . We then rescale the e-axis by
a factor M and use the fact that the temperature is an in-
tensive parameter to get T (EM ). The integration in equa-
tion (3) finally gives ω(EM ) for any large-but-finite value
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Fig. 1. BG analytical canonical prediction for the in-
ertial XY -ferromagnetic rotors with M = 100. (a)
Logarithm of the density of states ωM (EM ). (b) p(EM) ≡
ωM (EM ) exp(−EM/T )/Z, for different temperatures.

of M . In Figure 1a we plot the logarithm of ω(EM ) for
the first-neighbor rotors with M = 100 and Figure 1b dis-
plays BG p(EM ) for different values of the temperature T
(or of the specific energy e). We remark that, thanks to
the elementary properties of the logarithmic function, it is
possible to implement this calculation for quite large val-
ues of M , since one essentially deals with the exponents.

Because we are interested in very large values of τ
and n, the dynamical integration of Hamilton equa-
tions has been performed using the 4th order symplectic
Neri-Yoshida integrator [12] with an iteration parameter
that assures an energy conservation ∆EN/EN � 10−3

(a few runs with 10−5 showed that 10−3 is enough for
our scopes). In particular, we checked that the energy
fluctuations of the total system introduced by the finite
precision of the integrator algorithm is order of magni-
tudes smaller than those that one would have in presence
of a thermal coupling. An important point to perform an
efficient calculation concerns the initial conditions, that
must be close enough to equilibrium to avoid long tran-
sients. In this way we focus only on the equilibrium prop-
erties of the model, ruling out the possible presence of
metastable or quasi-stationary states appearing with far-
from-equilibrium initial conditions. Since the system does
not display any phase transition for T > 0 but presents a
tendency to clusterization at low temperatures, we have
used a Maxwellian distribution for the angular momenta
(with the appropriate temperature) and a set of l equidis-
tant Gaussian distributions for the angles, each with the
same variance appropriately calculated in order to yield
the desired total energy EN . In our calculation it was
sufficient to use l = 6 for a fast enough relaxation to
equilibrium in all our (microcanonical) setups. We have
checked that this particular choice has no influence on
the functional form of the equilibrium probability density
functions: it is done to save computational time. Differ-
ent close-to-equilibrium initial conditions eventually yield
the same results. For all our results we have waited for
103 iteration steps before starting the measurements for a
canonical system which is composed by a randomly chosen
subset of M adjacent rotors.

Fig. 2. (a–c) Comparison between the BG prediction p(EM )
(full line), the ensemble dynamical average pe(EM ) (crosses),
and the time dynamical average pt(EM ) (circles). k ≡ KM/M
is the value of the specific kinetic energy. (d) Analysis of dis-
crepancy between pe(EM ) and p(EM) (crosses), and pt(EM )
and p(EM) (empty circles). We also plot the largest Lyapunov
coefficient λmax (squares) and the inverse of the time-scale for
a normal fluctuation 1/t∆EM (full circles). The lines are guides
to the eye. See text for details.

In Figures 2a–2c we present a striking agreement be-
tween the BG analytical prediction for p(EM ) (full line)
and the dynamical estimation of pe(EM ) (crosses) for var-
ious order of magnitudes of the specific energy e with a
setup (M, N) = (102, 103) and a total number of real-
izations n = 5 × 106. On the other hand, pt(EM ) (cir-
cles), calculated with a total number of iteration steps
τ = 5 × 107, displays a good agreement with respect to
the BG analytical distribution for intermediate energies,
but starts to show large discrepancies when entering in the
weak-coupling regime. In order to quantify this difference,
we have defined the discrepancy 0 ≤ ε ≤ 2 between two
distributions as the integral of the absolute value of the
difference of the distributions. To allow for a comparison
with the largest Lyapunov coefficient, in Figure 2d we plot
the quantity 0 ≤ 1/ε−1/2 ≤ ∞ which is zero for maximum
discrepancy and infinite for perfect overlap of the distri-
butions. While for ensemble averages 1/ε − 1/2 is large
and almost constant with the energy, in the case of time
averages such a quantity presents a dramatic decrease for
large energies. In fact, we verified that the time necessary
to have a typical energy fluctuation of the canonical subset
(∆EM ∼ EM/

√
M) grows with the energy (see full circles

in Figure 2d, where we plot the inverse of this time), as
a consequence of the fact that rotors are increasingly free
(the potential is upper bounded). We point out that the
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Fig. 3. Dynamical evidence of the Boltzmann factor. We plot
ln[pe(EM )/ω(EM )] for the ensemble averages of Figure 2 (cir-
cles). T is the reciprocal of the slope of linear regressions (full
lines) on the data. Insets (a) and (b) show a magnification of
the results for e = 0.05 and e = 0.5 respectively.

largest Lyapunov coefficient (squares in Fig. 2d) does not
display a significant correlation with the time characteriz-
ing relaxation of pt(EM ) (circles in Figs. 2a–2c) towards
the BG distribution p(EM ) (see also [5] for a discussion
of this point). This means that for the present system the
positivity of the largest Lyapunov coefficient is a measure
of local chaos that does not imply relaxation to global
chaos.

An important result is the coincidence between the
value of the BG temperature T and twice the specific ki-
netic energy k ≡ KM/M within an error of at most 2%.
We stress that the probability density functions shown in
Figure 2 are obtained by means of first principles only and
with complete independence from the BG theory, which
we are checking. The concurrence between dynamics and
the Boltzmann factor appears satisfactorily in the linear
regressions of Figure 3, where we plot ln[p e(EM )/ω(EM )]
for the ensemble averages of Figures 2a–2c. With other
values of (M, N), namely (50, 500) and (103, 104), the re-
sults were qualitatively the same.

We also obtained a confirmation of our results by
implementing the same calculation scheme for the FPU
β-model, defined by the potential V (qi+1 − qi) ≡ (qi+1 −
qi)2/2 + 0.1(qi+1 − qi)4/4 with qi ∈ �, again considering
close-to-equilibrium initial conditions (see, e.g., [5] for the
analytical canonical solution and for a discussion of initial
conditions). Although it is known that the FPU model
presents, in common with the rotors model, a very rich
anomalous behavior at low energies [4,5], for our initial
conditions and for the energy-range we tested we found
that pt(EM ) is in good agreement with the BG prediction
(Fig. 4).

In summary, we recall that using the standard BG for-
malism and common numerical techniques, we have in-

Fig. 4. Same as Figures 2a–2c for the FPU β-model. See text
for details.

troduced a new calculation that allows for a comparison
between nonlinear Newtonian dynamics and canonical sta-
tistical mechanics. Implementing a standard setup we have
in fact shown that the BG energy distribution in Γ -space
coincides with the one that is obtained dynamically (in-
tegrating Hamilton equations for close-to-equilibrium ini-
tial conditions) when an ensemble average is executed. We
have checked this conclusion for two paradigmatic first-
neighbor nonlinear Hamiltonians. As a side result, this
calculation provides a dynamical confirmation of the very
well known relation between temperature and specific ki-
netic energy k = T/2 (for one-dimensional systems). With
respect to finite-time dynamical averages, at moderate low
energies we have found a confirmation of the BG predic-
tions. For the XY -model at high energies, if the time-
scale is not very large, finite-time averages disagree with
ensemble averages as a consequence of an increase of the
time-scale of typical energy fluctuations. The energy de-
pendence of this discrepancy does not display correlation
with that of the largest Lyapunov coefficient (see also [5]).

Finally, let us emphasize that what we have shown
here is that equilibrium thermal statistics descends from
(finite-precision) mechanics, even for a system in contact
with a thermostat (usually discussed through Monte Carlo
or Nosé-Hoover techniques, which do not deduce the equi-
librium distribution but impose it [8]). Indeed, this is
the significance of Figures 2a–2c and 4, where circles and
crosses have been obtained from Newton law, whereas full
lines come from the BG theory. Equivalently, if we recall
that the density of states is a purely mechanical concept,
the same conclusion is shown in Figure 3. The present cal-
culation scheme provides an insight onto the basic ques-
tion of the dynamical foundation of statistical mechan-
ics [1,2,5–7], and may serve as a useful tool in the discus-
sion of complex situations (see e.g., [9]) where dynamical
discrepancies with the BG theory have been found.
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